
Sirona SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Page 1 of 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

SIDEXIS neXt Generation
 GBE

Programmer's Guide

SIDEXIS XG Programming Model Version 1.2

Programmer’s Guide Version 1.2 (Released)

© 2003-2004 Sirona Dental Systems GmbH – all rights reserved

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 2 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

History

Date Revision Name

26.09.01 Draft M. Reinke, RSWE
09.11.01 Review modifications M. Reinke, RSWE
18.03.03 SIDEXIS XG Update => Version 1.1 M. Reinke, RSWE
15.07.03 Release update => Version 1.2 M. Reinke, RSWE
15.03.04 Review & Release Version 1.2 JüZi

Product History

Date Product Version Name

21.03.03 SIDEXIS XG Version 1.12 JüZi
08.04.04 SIDEXIS XG Version 1.2 JüZi

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 3 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

1 Contents
1 Contents... 3
2 Figures.. 5
3 Getting Started ... 6

3.1 About this document .. 6
3.2 References ... 6
3.3 Glossary ... 6
3.4 What is SIDEXIS neXt Generation? .. 6
3.5 What is a PlugIn? ... 7
3.6 What Background Do You Need?.. 7
3.7 Documentation Roadmap .. 7
3.8 Recommended reading.. 8
3.9 A SIDEXIS PlugIn in action .. 8
3.10 Potential applications ... 12

4 The SIDEXIS XG Architecture... 13
5 Developing SIDEXIS PlugIns.. 14

5.1 The PlugIn Interface... 14
5.2 Which PlugIn category should I choose? .. 14
5.3 How do I create a SIDEXIS PlugIn? .. 14

5.3.1 Custom development of SIDEXIS PlugIns .. 15
5.3.2 Using the SIDEXIS XG PlugIn Wizard for Visual C++ 15

5.4 PlugIn Wizard Installation .. 15
5.5 Using the PlugIn wizard – a sample walkthrough.. 15

5.5.1 Creating a new project ... 15
5.5.2 Common information.. 16
5.5.3 PlugIn information .. 17
5.5.4 PlugIn GUI information... 18
5.5.5 Finishing the wizard ... 20
5.5.6 The project.. 20

5.6 SIDEXIS XG’s COM Programming Model ... 22
5.7 Programming Model Concepts .. 23

5.7.1 Coordinate systems... 25
5.7.2 Typed objects ... 25
5.7.3 Length measurement and pixel values scenario................................. 26
5.7.4 Palette data retrieval scenario ... 29

5.8 Sample IDirectDental PlugIn Walkthrough .. 31
5.8.1 Cbinarize’s PlugIn interface ... 31
5.8.2 GetFriendlyName: A sample Property read implementation............... 32
5.8.3 Run: The PlugIn activation ... 33
5.8.4 Toolbar buttons: The PlugIn Resources .. 34

5.9 PlugIn COM registration... 34

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 4 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.9.1 Dll registration .. 34
5.9.2 Exe registration .. 35
5.9.3 Registering Plugins & OS access rights .. 35

5.10 Installing SIDEXIS PlugIns... 35
5.10.1 Updates .. 36

5.11 Debugging SIDEXIS PlugIns ... 36
5.11.1 Project settings... 36
5.11.2 How can I debug a PlugIn?.. 37

6 Support... 38
6.1 Frequently asked questions ... 38

7 Appendix .. 39
7.1 SDK contents ... 39
7.2 SIDEXIS XG PlugIn SDK License Agreement .. 40

8 Index.. 41

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 5 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

2 Figures
Figure 1 PlugIn selection using a custom toolbar...9
Figure 2 Binarize filter parameter dialog...9
Figure 3 resulting filtered sample image.. 10
Figure 4 Filter installation via PlugIn Manager... 11
Figure 5 Filter placement via Customize dialog... 12
Figure 6 Plugin - PM relationship.. 13
Figure 7 PlugIn deployment... 14
Figure 8 SIDEXIS programming model overview .. 23
Figure 9 Visible PM objects ... 24
Figure 10 Hierarchical object tree... 26
Figure 11 Collection of objects .. 26
Figure 12 Hidden length measurements ... 29
Figure 13 PlugIn bitmap resources .. 34
Figure 14 Debugging project settings .. 37

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 6 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

3 Getting Started

3.1 About this document
This starting manual contains basic articles about general aspects in programming SIDEXIS.
Refer to this documentation to get a high-level SIDEXIS programming overview.

To get more in detail please refer to the assoicated reference manuals.

3.2 References
[1] SIDEXIS XG Programmers Guide (this document)

[2] SIDEXIS XG Programmers Reference

[3] SIDEXIS XG SDK license agreement (License.txt)

3.3 Glossary
SIDEXIS XG SIDEXIS neXt Generation

PM Programming model

PlugIn Dll or EXE extension module for SIDEXIS

COM Component object model

DirectDental SIDEXIS XG's COM interface standard

SDK Software development kit

MSVC Microsoft Visual C++

VBA Visual Basic for Applications

3.4 What is SIDEXIS neXt Generation?
SIDEXIS neXt Generation ist based on a series of components and services. This
architecture can be extended by adding specialized components, called PlugIns.

SIDEXIS is a modular system of pluggable components. SIDEXIS PlugIns are embedded in
the SIDEXIS programming model which both offers internal SIDEXIS services to the plugins
and requires some fomal plugin interface standards. The kind of services offered to the
plugins are described in the SIDEXIS programming model (PM). The requested interfaces
follows the DirectDental standard.

SIDEXIS is based on the Microsoft component object model (COM). As a SIDEXIS PlugIn
writer some knowledge about programming COM is required.

This guide supports the plugin development process by offering an overview picture covering
the top level aspects.

For obtaining details, the following reference documents should be consulted:

Document name Contents

SIDEXIS XG Programmer’s Guide [1] This document.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 7 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Document name Contents

SIDEXIS XG Programmer’s Reference [2] Reference covering the XG programming model in detail.
The programming model is available to PlugIns and VBA
scripts as well.

Reference covering all aspects of DirectDental PlugIn
development.

3.5 What is a PlugIn?
The range of functionality of an existing SIDEXIS installation can be extended according to
the specified application by PlugIns. After one-time installation of such a module the new
functionality is available to the user integrated into the SIDEXIS user interface, for example
as a new button in a SIDEXIS toolbar.

PlugIns run fully integrated inside the SIDEXIS application; there is no switching into other
applications necessary. Here SIDEXIS is working as a universal platform for volatile
extensions that are brought into action by the user in a well-known environment for raising
productivity and extending the solution spectrum. On account of the well-known SIDEXIS
environment the effort for training for users is remarkably low: Just the functionality added by
the new PlugIn has to be learned, the SIDEXIS frame is already known!

PlugIns are offered as Windows DLL (Dynamic Link Libraries) or EXE modules (Executables)
and are given access to the SIDEXIS-internal Programming Model via the DirectDental
interface. With this technology the user commands about flexible, safe and performing
SIDEXIS extension possibilities in order to match working with SIDEXIS even better with
local requirements.

A toolkit for developing own PlugIns enables you too to extend SIDEXIS. With the SIDEXIS
XG SDK you obtain all necessary information, tools and samples for the creation of
SIDEXIS-compatible PlugIns.

3.6 What Background Do You Need?
The amount you need to know for a particular SIDEXIS task depends on the task. For
example, you must understand basic COM principles and C or C++ to create a SIDEXIS
PlugIn.

The following tables show what you might need to know to perform different tasks and get
the most out of the documentation.

Section Background

Getting Started None

A SIDEXIS PlugIn in action Basic knowledge about SIDEXIS XG's modes of operation

Developping SIDEXIS PlugIns Basic knowledge about COM programming.

3.7 Documentation Roadmap
To find out what background different tasks require, see What Background Do You Need?

To help you find the information you need, the following list describes the content of each
section in the SIDEXIS documentation and when you will typically use it.

Section Content

Getting Started This chapter gives general information about SIDEXIS. Read this

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 8 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Section Content

section to orient yourself when first starting with SIDEXIS and it's
programming capabilities.

The SIDEXIS XG Architecture Describes the overall system architecture and it's building blocks.
Refer to this chapter to get an idea where your programming
activities take place.

Developing SIDEXIS PlugIns Contains a brief description of the SIDEXIS PlugIn programming
process. Refer to this section to get information how to start your
custom PlugIn development.

3.8 Recommended reading
To get more detailed information about several aspects of COM PlugIn programming the
following reading list might be helpful:

Reference Description

MSDN Microsoft Developer Network, either CD-ROM distribution or
Website

MSDN article Q131086 SAMPLE: SAFEARAY: Use of Safe Arrays in Automation

Inside Distributed COM, G.Eddon,
H.Eddon, MS Press 1998

Covers COM and DCOM aspects

3.9 A SIDEXIS PlugIn in action
This section shows the integration and usage of some sample filter PlugIns inside SIDEXIS.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 9 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 1 PlugIn selection using a custom toolbar

Figure 1 shows a typical image processing scenario using a filter provided as PlugIn. The
example filter is a simple BINARIZE image processing filter.

Figure 2 Binarize filter parameter dialog

Right after the binarize filter selection a custom filter parameter dialog is shown (Figure 2).
The binarize filter asks for one single grey level parameter, which represents the filter
threshold: below this value all pixels are painted black, above all pixels are shown white.

After prompting the filterparameter dialog the filter operation is launched and the result will be
displayed in SIDEXIS as shown in Figure 3.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 10 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 3 resulting filtered sample image

The storage of filtered images is integrated seamless into SIDEXIS, so all undo and view
regeneration operations are supported.

Pressing the undo button will regenerate the unfiltered image.

So how did we get the BINARIZE PlugIn running?
First of all this filter is provided as DirectDental compatible PlugIn. The associated Dll is
installed using the PlugIn Manager which is part of SIDEXIS XG's central customize dialog.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 11 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 4 Filter installation via PlugIn Manager

After installation via "Add plugin..." the new PlugIns are documented in the list of available
PlugIns.

Now it's time to move on to the "Commands" section of the Customize dialog. In case of
previously installed filter PlugIns the new functions are presented in the "Filter" category.
Selecting this option shows up all available filter PlugIns. In our case the BINARIZE Filter
may now be selected via mouse and moved to any open SIDEXIS toolbar via drag&drop.

That's it. Quite easy, isn't it?

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 12 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 5 Filter placement via Customize dialog

3.10 Potential applications
The provided samples cover only the top of the iceberg of possible SIDEXIS extensions.
Using the SIDEXIS concept any image manipulating filter can be integrated into SIDEXIS
today.

In the future the SIDEXIS concept will be extended not only to filtering extensions but in the
areas of file I/O, image aquisition etc.

The http://www.sidexis.com website will provide listings about available and new PlugIns
both from Sirona and from independent 3rd party developers.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 13 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

4 The SIDEXIS XG Architecture
This chapter offers a brief overview about the new open and extendable application
architecture.

Figure 6 Plugin - PM relationship

PlugIns connect to a running SIDEXIS instance using the DirectDental interface standard.
Doing so, they get hosted by SIDEXIS and are instantiated through user interaction.
SIDEXIS communicates to the PlugIn using a predefined IDirectDental API which all PIs
have to implement.

The PlugIns themselves can communicate with SIDEXIS through the XG programming
model (PM). The PM covers all aspects of internal examination, image etc representation.
The PM is reachable through a well documented set of objects, methods and properties.

Please refer to [2] for detailed information concerning the PM.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 14 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5 Developing SIDEXIS PlugIns

5.1 The PlugIn Interface
A SIDEXIS PlugIn is a COM EXE module which can be added to an existing SIDEXIS
installation. After proper component registration through SIDEXIS's PlugIn Manager the
custom new functionality is presented to the SIDEXIS user.

Custom PlugIn Dll

DirectDental comp. Implementation

Custom PlugIn implementations

IDirectDental

Figure 7 PlugIn deployment

5.2 Which PlugIn category should I choose?
Is your PlugIn an image processing filter…

 …that can handle any image?

Ø Then choose category “Filter”.

 …that can handle greyscale images only?

Ø Then choose category “Filter/X-ray”.

 …that can handle true colour images only?

Ø Then choose category “Filter/Video”.

Does your PlugIn something else?

Ø Then choose category “Void”.

5.3 How do I create a SIDEXIS PlugIn?
SIDEXIS-compatible PlugIns can be developped using any environment capable to generate
inprocess COM servers (= COM .DLLs) or out of process servers (=COM .EXEs). The
shipped samples and sources are based on Microsoft Visual C++. This is the reference
environment, but it shouldn’t be a problem to get your custom PlugIns done with Delphi, VB
etc.

There are two development strategies:

1. Developping from scratch using the SIDEXIS COM specifications (Refer to [2] for a
detailed description of SIDEXIS COM interfaces specifications),

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 15 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

and/or

2. Using the Visual C++ SIDEXIS XG PlugIn Wizard provided with this SDK.

5.3.1 Custom development of SIDEXIS PlugIns
Take this advanced direction to develop custom PlugIns if you are using a non MSVC/C++
development environment (Visual Basic, Delphi etc.) or you prefer native COM interfaces of
the SIDEXIS programming model.

If you are not using MSVC/C++ for your PlugIn development purposes please refer to your
software development toolkit COM references for detailed information. These toolkits provide
proprietary mechanisms for handling COM objects and accessing its methods and
properties.

5.3.2 Using the SIDEXIS XG PlugIn Wizard for Visual C++
This is by far the the easiest way to create your PlugIn. A helpful step-by-step introduction is
given in the next chapter. The wizard incorporates a rapid application programming style
offering the following features:

• Generation of a complete class framework, ready to compile immediately

• Configurable selection of custom filter parameters

• Sample filter implementation and filter dialog, can be modified immediately

• Most COM programming aspects are totally hidden, only MFC programming knowledge
required

Using the SIDEXIS XG PlugIn Wizard is recommended if your PlugIn project can be realized
with the Visual C++ environment and your requirements deal with standard filter applications.

This tool is a special purpose application wizard for Visual C/C++ integration. It is strongly
recommended to start new SIDEXIS PlugIn projects using this provided wizard.

5.4 PlugIn Wizard Installation
Simply copy the following files from the SDK software distribution to your local Visual C/C++
template directory before you create a new PlugIn project. The needed files are contained in
the SDK.ZIP distribution inside the \XGExeWizard directory:

Source: \XGExeWizard.awx

 \XGExeWizard.hlp

Target: \Microsoft Visual Studio\Common\MSDev98\Template\

5.5 Using the PlugIn wizard – a sample walkthrough
Using the PlugIn wizard is very easy. It takes only a simple 3-step construction workflow to
finish the first compilable version of your new custom Plugin.

5.5.1 Creating a new project
For the creation please use the New option inside Microsoft Visual Studio. This will show up
all the wizards installed on your system.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 16 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

To set up a SIDEXIS PlugIn project you have to choose the "SIDEXIS XG Exe plug-in
wizard". There you have to enter a name for your new project. This name can be different
from the name of your PlugIn function name which will be entered on a page later on.

Please don't forget to specify the location where the PlugIn project should be generated.

Figure 1 New Project

5.5.2 Common information
The first step for creating the new PlugIn project asks for information about yourself. This
information will be used for creating a special project for you with predefined comment blocks
customized with your name and company.

The version field represent the version of your PlugIn.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 17 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 2 Wizard step 1, Common informations

5.5.3 PlugIn information
The second step requests information about the type of the PlugIn you wish to create and
informations about the PlugIn.

The type you are creating depend on the functionality you wish to implement. If you want to
create a PlugIn which can be started regardless of the state of SIDEXIS (opened image or
not) you have to choose the "void plug-in" option. If your PlugIn can only be called if there is
an already opened image you should use the option "filter plug-in".

The name for the PlugIn will be used to craete a class with the appropriate name including
the ProgID.

The text you are entering in the description field will be shown as descriptive information
inside SIDEXIS. You should use this field only in English language.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 18 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 3 Wizard step 2, PlugIn informations

5.5.4 PlugIn GUI information
The third step allows you to enter the informations which will be used on the SIDEXIS user
interface to identify your PlugIn. These informations will be shown on the PlugIn-manager
page as well as on the GUI itself (buttons, tooltips, statusbars).

If your PlugIn has a need for parameters which the user has to enter you can checkmark the
checkbox "Show parameter dialog" and the wizard will create a dialog for you to customize.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 19 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 4 Wizard step 3, PlugIn GUI informations

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 20 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.5.5 Finishing the wizard
The last step shows up file creation information about the project to be created.

Figure 5 New project information

5.5.6 The project
Right after the creation you will see the project workspace. The wizard has created sample
code for you so you can compile it and add it to the list of SIDEXIS PlugIns without any
modification.

The project files represent the starting point for your custom modifications. Using the
SIDEXIS programming model and the provided entry points you can add your PlugIn
functionality. The wizard generated framework allows immediate integration and testing steps
inside SIDEXIS.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 21 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 6 Files created

The PlugIn functionality has to be realized in the function "Run" from your PlugIn interface
class. Add your custom code inside this method to alter the functionality of the created
sample PlugIn.

Figure 7 Central DirectDental interface class

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 22 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.6 SIDEXIS XG’s COM Programming Model
SIDEXIS offers a collection of COM components which my be used by a custom plugin. To
establish a bidirectional communication the plugin COM component has to keep a defined
interface following the DirectDental standard.

The programming model covers most aspects of SIDEXIS XG's objects like examinations,
images, drawing objetcs and patients.

For a detailled reference please refer to [2].

Some important top level interfaces:

Component/
Interface

Description

IDirectDental This is the COM interface standard every PlugIn must follow to be compatible with
SIDEXIS

IApplication The programming model entry to get access to the SIDEXIS PM. It is the root of all
other PM objects. The IApplication object of a running SIDEXIS instance can be
connected through the "SIDEXISNG.Application" ProgID. Having this connection all
other items of the PM can be accessed in a top-down strategy.

IExam This PM object wraps (available) open exams

IImage One of the most prominent exam memebers – the actual image data object

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 23 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

LEGEND

Collection

DirectDentalApplication

Window

View

Exam

Patient

LUT

ROI

Point

Point

Point

Point

TakeFrame

Image

Object

Object

Object

TakeFrames

Objects

SelectionObjects

Points

Points

Points

Points

Length

Cut

Angle

DiagnosisDiagnoses

Cuts

Lengths

Angles

ObjectObjects See Objects collection model...

See Objects
collection model...

Figure 8 SIDEXIS programming model overview

5.7 Programming Model Concepts
Figure 9 presents an overview about visible SIDEXIS programming model objects. The
yellow notes describe each object refering to it's corresponding programming model name.
you can refer to [2] for a detailed description of each object's methods and properties.

Sirona SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Page 24 of 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 9 Visible PM objects

Sirona SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Page 25 of 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.7.1 Coordinate systems
Pay attention to the mentioned coordinate systems. Starting on the top left you can find the
exam coordinate system origin [0,0]. The position of all subsequent objects are returned in
exam coordinates.

Looking inside an open Image object all corresponding subsequent objects are managed
using the image coordinate system . The origin of this coordinate system is always the left top
corner of the Image object.

Images may be rotated. For performance reasons, after a 90° rotation, Image.Width and
Image.Height will be swapped. How to obtain rotation information and how to obtain the
underlying coordinates see chapter “Length measurement and pixel values scenario”.

Don’t go out without this small code snippet on how to get the physical memory location of a
pixel in a given Image rotation:
CPoint GetPixelMem(Iimage& Image, Cpoint& ptPixelImage) // Pixel im Image coordinates
{
 CPoint ptRotated; // Return value in “memory” coordinates

 switch (Image.GetRotation())
 {
 case 90:
 ptRotated.x = ptPixelImage.y;
 ptRotated.y = (Image.GetHeight() - 1) - ptPixelImage.x;
 break;

 case 180:
 ptRotated.x = (Image.GetWidth() - 1) - ptPixelImage.x;
 ptRotated.y = (Image.GetHeight() - 1) - ptPixelImage.y;
 break;

 case 270:
 ptRotated.x = (Image.GetWidth() - 1) - ptPixelImage.y;
 ptRotated.y = ptPixelImage.x;
 break;

 case 0:
 default:
 ptRotated.x = ptPixelImage.x;
 ptRotated.y = ptPixelImage.y;
 break;
 }
 return ptRotated;
}

5.7.2 Typed objects
SIDEXIS allows two variants of accessing it's programming model objects:

1. Traversal of the specified object tree

2. Iteration of typed objects collections

Using the fist method the object types are given implicit by their position indside the object
tree. The second method offers an iterative access through a pool of typed objects. The
typed object itself may be accessed using the Object's TypedObject property.

The following figures illustrate both options:

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 26 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Application

ActiveExam

TakeFrames

TakeFrame 1

TakeFrame 2

Figure 10 Hierarchical object tree

Application

ActiveExam

Objects

Object 1

Object 2

TakeFrame 1

TakeFrame 2

Figure 11 Collection of objects

Iterations of typed objects collections are ordered in descending overlay Z-order. This means
f.ex. that in a list with TakeFrames, the active (= topmost) TakeFrame appears as the last
item.

5.7.3 Length measurement and pixel values scenario
The starting point for this example is an open SIDEXIS exam and an embedded open image
object. Inside this image some length measurements are placed manually. The scenario task
is to retrieve the length measurement points and the corresponding greyscale pixel values at
these places.

In the first section a valid exam object is retrieved. The exam object is the container of all
embedded objects, including the expected length measurement objetcs.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 27 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Having an exam object we use the Objects collection to get access to the embedded
subsequent objects.
 IImage Image;

 Image.AttachDispatch(pdispImage);

 // Now iterating through the objects collection to look for the length objects
 LPDISPATCH pdispObjects = Image.GetObjects();

 if (!pdispObjects)
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 IObjects Objects;

 Objects.AttachDispatch(pdispObjects);

 long lLengths = 0;

For each object we check its type. We're interested only in NGLength objects.
 for (long lObjects = 0; lObjects < Objects.GetCount(); lObjects++)
 {
 LPDISPATCH pdispObject = Objects.GetItem(lObjects);

 if (!pdispObject)
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 IObject Object;

 Object.AttachDispatch(pdispObject);

 switch (Object.GetType())
 {

Here we go. The following code snippet deals only with Length objects
 // Is it a length?
 case NGLength:
 {
 LPDISPATCH pdispLength = Object.GetTypedObject();

 if (!pdispLength)
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 ILength Length;

 Length.AttachDispatch(pdispLength);

After having retrieved the actual Length object as typed object through the object proxy we
can access it's points collection.
 LPDISPATCH pdispPoints = Length.GetPoints();

 if (!pdispPoints)
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 IPoints Points;

 Points.AttachDispatch(pdispPoints);

Using the points collection we do iterate through all embedded single point objects and
retrieve their position values in image coordinates.
 for (long lPoints = 0; lPoints < Points.GetCount(); lPoints++)
 {
 LPDISPATCH pdispPoint = Points.GetItem(lPoints);

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 28 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 if (!pdispPoint)
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 IPoint Point;

 Point.AttachDispatch(pdispPoint);

At this point we do retrieve the point coordinates of every single Point object. The following
Point data can be used to set up a length calculation. In our case we retrieve the greyscale
pixel value as additional information of the corresponding pixel. Since we want to obtain pixel
values rather than coordinates we have to take into account the Image rotation in memory.
 long lX = 0, lY = 0;

 Point.Get(&lX, &lY); // These are image coordinates

 // Now get the pixel value for the corresponding point
 CImage theImage; // Pls. note: This wrapper only for greyscale images!

 if (!theImage.FromSidexis(pdispImage))
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }
 HBITMAP hBitmap = theImage.GetBitmap();
 CBitmap* pBitmap = CBitmap::FromHandle(hBitmap);

 CDC memDC;

 memDC.CreateCompatibleDC(NULL);

 CBitmap* pOld = memDC.SelectObject(pBitmap);
 Cpoint ptRotated;
 int nRotation = (int) Image.GetRotation();
 Crect rcRotated;

 switch (nRotation)
 {
 case 90:
 ptRotated.x = lY;
 ptRotated.y = (theImage.GetHeight() - 1) - lX;
 break;

 case 180:
 ptRotated.x = (theImage.GetWidth() - 1) - lX;
 ptRotated.y = (theImage.GetHeight() - 1) - lY;
 break;

 case 270:
 ptRotated.x = (theImage.GetWidth() - 1) - lY;
 ptRotated.y = lX;
 break;

 default:
 ptRotated.x = lX;
 ptRotated.y = lY;
 break;
 }
 COLORREF cr = memDC.GetPixel(ptRotated);

In this example all retrieved data is simply output to an edit window (see example below)
 // output for this sample
 CString strText;

 strText.Format(IDS_OUTPUT, lLengths, lPoints, lX, lY,
 ptRotated.x, ptRotated.y,
 GetRValue(cr), GetGValue(cr), GetBValue(cr));
 pView->GetEditCtrl().ReplaceSel(strText, TRUE);
 memDC.SelectObject(pOld);
 }

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 29 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 lLengths++; // length number
 break; // case NGLength
 }
 default: break;
 }
 }
 if (!lLengths)
 AfxMessageBox(IDS_E_NOLENGTH, MB_ICONINFORMATION | MB_OK);

This sample will typically output the following text (Greyscale image):
Length[0] - Point[0] - Pixel(144, 190) = 155 155 155
Length[0] - Point[1] - Pixel(602, 256) = 255 255 255
Length[0] - Point[2] - Pixel(524, 498) = 186 186 186

Please keep attention to the following issue: Length measurements inside image objects are
visible to the user only if the starting and end point of the measurement objects are
completely visible to the user. If any point corresponding to the measurement is "outside" the
displayed TakeFrame (as shown in Figure 12) the length measurement note will not be
displayed.

All length measurement objects and its properties can be retrieved in any case via
programming model.

Figure 12 Hidden length measurements

5.7.4 Palette data retrieval scenario
Again the following code snippet starts with the active exam object aquisition. The task of this
scenario is to extract and display palette data of an open image object inside this exam.

In the first section a valid exam object is retrieved. The exam object is the container of all
embedded objects, including the expected image object.

Having an exam object we reference the active image object directly.
 IExam Exam;

 Exam.AttachDispatch(pdispExam);

 // Retrieve the active image
 LPDISPATCH pdispImage = Exam.GetActiveImage();

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 30 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 if (!pdispImage)
 {
 AfxMessageBox(IDS_E_NOIMAGE, MB_ICONSTOP | MB_OK);
 return;
 }
 IImage Image;

 Image.AttachDispatch(pdispImage);

Having an image object we can get access to it's embedded palette data
 COleVariant varPalette;

 SCODE sc = Image.GetPalette(&varPalette);

 if (FAILED(sc))
 {
 AfxMessageBox(IDS_E_INTERNAL, MB_ICONSTOP | MB_OK);
 return;
 }

The palette is handled through an OLE safearray and consists of a byte array of RGBQUADs.
 COleSafeArray sa;
 BYTE* pPalette = NULL; // The palette
 long lLBound = 0; // Upper Bound
 long lUBound = 0; // Lower Bound

 sa.Attach(varPalette);
 sa.GetLBound(1, &lLBound);
 sa.GetUBound(1, &lUBound);

 long lByteSize = (lUBound - lLBound + 1);
 long lPaletteEntries = lByteSize / sizeof(RGBQUAD);

 sa.AccessData((PVOID*) &pPalette);

 RGBQUAD* pPaletteWork = new RGBQUAD[lPaletteEntries];

 (void) memcpy(pPaletteWork, pPalette, lByteSize); // [Bytes]

 sa.UnaccessData();

Now having access to the complete palette array we report it to a local text object. A typical
output will be shown below.
 for (long lEntries = 0; lEntries < lPaletteEntries; lEntries++)
 {
 CString strText;

 strText.Format(_T("Palette[%d] RGB 0x%02X%02X%02X\r\n"),
 lEntries,
 pPaletteWork[lEntries].rgbRed,
 pPaletteWork[lEntries].rgbGreen,
 pPaletteWork[lEntries].rgbBlue);
 pView->GetEditCtrl().ReplaceSel(strText, TRUE);
 }
 delete pPaletteWork;

The shown sample typically provides the following output::
Palette[0] RGB 0x000000
Palette[1] RGB 0x010101
Palette[2] RGB 0x020202
Palette[3] RGB 0x030303
Palette[4] RGB 0x040404
Palette[5] RGB 0x050505
Palette[6] RGB 0x060606
Palette[7] RGB 0x070707
Palette[8] RGB 0x080808
Palette[9] RGB 0x090909
...

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 31 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.8 Sample IDirectDental PlugIn Walkthrough
This chapter presents a brief description of the most important parts of the provided Binarize
sample PlugIn. The shown code samples are not complete (please refer to the sample
project files) but offers a good overview about the main coding patterns.

We take a look at the Binarize PlugIn which is part of the StandardFilters sample PlugIn. This
is a PlugIn implemented with Microsoft Visual C++.

Most of the work is done using the provided SIDEXIS XG PlugIn Wizard for Microsoft Visual
C++, but for academic purposes we jump into code right now to see some important
implementation details.

The following walkthrough focuses on the usage of the IDirectDental COM interface provided
by your custom PlugIn.

5.8.1 Cbinarize’s PlugIn interface
Let's start with the IdirectDental-compatible interface. CCmdTarget is used as MFC COM-
capable base class for easy COM interface generation. The generated ODL file is compatible
to the IDirectDental standard. This interface will be called from SIDEXIS during runtime,
especailly from the PlugIn manager residing inside SIDEXIS.

//---
/// Classname : CBinarize : public CCmdTarget
///
/// This class is the plugin interface for the NG host.
///
//---
class CBinarize : public CCmdTarget
{
 //---
 // Member functions
 //---
public:
 DECLARE_DYNCREATE(CBinarize)
 CBinarize();
 virtual ~CBinarize();

 //{{AFX_VIRTUAL(CBinarize)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

protected:
 LPDISPATCH GetApplication();

 //{{AFX_MSG(CBinarize)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE_EX(CBinarize)

 //{{AFX_DISPATCH(CBinarize)
 afx_msg BSTR GetLastParameters();
 afx_msg void SetLastParameters(LPCTSTR lpszNewValue);
 afx_msg BSTR GetVendor();
 afx_msg BSTR GetDescription();
 afx_msg BSTR GetVersion();
 afx_msg BSTR GetCategory();
 afx_msg BSTR GetMenuEntry();
 afx_msg BSTR GetMessageString();
 afx_msg BSTR GetTooltipText();
 afx_msg BSTR GetFriendlyName();
 afx_msg BSTR GetBitmapResourceSmall();
 afx_msg BSTR GetBitmapResourceLarge();
 afx_msg BSTR GetKey();

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 32 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 afx_msg SCODE Run();
 afx_msg BSTR GetReserved();
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()

 DECLARE_INTERFACE_MAP()

 //---
 // Member variables - Short description
 //---
protected:
 CCustomImage m_theImage;
};

5.8.2 GetFriendlyName: A sample Property read
implementation
The following code fragment shows how to provide a language compatible fiendly name
property value. First of all a instance of the SIDEXIS programming model root, the
IApplication object, is retrieved.

Inside the \IDirectDental SDK directory you'll find pregenerated wrappers for the SIDEXIS
PM. Just add them to your project and bind the required PM instances through valid
LPDISPATCH interfaces (::GetApplication is a brief example for this step).

Using the bound IApplication the associated language ID can be read and used for custom
language specific purposes.

BSTR CBinarize::GetFriendlyName()
{
 CString strResult;
 IApplication Application;

 Application.AttachDispatch(GetApplication());

 switch (Application.GetLanguage())
 {
 case LANGUAGE_ENGLISH_US:
 strResult = _T("Binarisation");
 break;

 case LANGUAGE_GERMAN:
 strResult = _T("Binarisierung");
 break;

 default:
 strResult = _T("Binarisation");
 break;
 }
 return strResult.AllocSysString();
}

In this sample a very useful helper, GetApplication(), is used and looks like the following
implementation. This method should be available in nearly all PlugIns.

LPDISPATCH CBinarize::GetApplication()
{
 // Retrieve ClassID
 CLSID clsid;
 HRESULT hr = CLSIDFromProgID(L"SIDEXISNG.Application", &clsid);

 if (FAILED(hr))
 return NULL;

 // Find the active object
 LPUNKNOWN pUnkSrv = NULL;

 hr = GetActiveObject(clsid, NULL, &pUnkSrv); // returns Unknown pointer
 if (FAILED(hr))
 return NULL;

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 33 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 // Get the Dispatch interface
 LPDISPATCH pdispApp = NULL;

 hr = pUnkSrv->QueryInterface(IID_IDispatch, (void**) &pdispApp); // returns IDispatch
 (void) pUnkSrv->Release(); // We don't need this anymore
 if (FAILED(hr))
 return NULL;

 return pdispApp;
}

5.8.3 Run: The PlugIn activation
The one and only required IDirectDental method that actually activates the PlugIn.

During the beginning, an IApplication instance is bound and used to get access to the
SIDEXIS programming model.

Using Application.GetActiveExam() the PlugIn first checks if there is any open exam
available. Only open exams can host any image data which is checked right afterwards using
Exam.GetActiveImage(). Note: The IExam object is part of the already bound IApplication.

Having got access to a valid Image, the image data is accessed through a local image
wrapper, m_theImage. This helper object is responsible for the initial parameter dialog
display and for the consecutive processing of the image data (for a detailed review of this
wrapper please refer to the sample code)

After manipulation of the single pixels, the whole dataset is retransferred to SIDEXIS.

SCODE CBinarize::Run()
{
 IApplication Application;

 Application.AttachDispatch(GetApplication());

 LPDISPATCH pdispExam = Application.GetActiveExam();

 if (!pdispExam)
 {
 OutputDebugString(_T("CBinarize::Run() No active examination\n"));
 return S_OK;
 }
 IExam Exam;

 Exam.AttachDispatch(pdispExam);

 LPDISPATCH pdispImage = Exam.GetActiveImage();

 if (!pdispImage)
 {
 OutputDebugString(_T("CBinarize::Run() No active image\n"));
 return S_OK;
 }
 if (!m_theImage.FromSidexis(pdispImage))
 {
 OutputDebugString(_T("CBinarize::Run() Couldn't get image pixel map\n"));
 return S_OK;
 }
 // Do the work!
 if (FAILED(m_theImage.GetBinarizeParameters()))
 {
 OutputDebugString(_T("CBinarize::Run() Couldn't retrieve parameters\n"));
 return S_OK;
 }
 if (!m_theImage.Binarize())
 {
 OutputDebugString(_T("CBinarize::Run() Couldn't filter image pixel map\n"));
 return S_OK;
 }
 (void) m_theImage.ToSidexis(pdispImage);
 (void) pdispImage->Release();

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 34 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

 Exam.Invalidate();
 return S_OK;
}

5.8.4 Toolbar buttons: The PlugIn Resources
Displaying custom bitmaps on associated SIDEXIS toolbars, two bitmaps are required in the
PlugIn's resource, one for each possible toolbar resolution. Both bitmaps are identified
through its resource names which are returned using the GetBitmapResourceSmall() and
GetBitmapResourceLarge() Methods:

BSTR CBinarize::GetBitmapResourceSmall()
{
 CString strResult = _T("IDB_BINARIZE_SMALL");

 return strResult.AllocSysString();
}

BSTR CBinarize::GetBitmapResourceLarge()
{
 CString strResult = _T("IDB_BINARIZE_LARGE");

 return strResult.AllocSysString();
}

Figure 13 PlugIn bitmap resources

5.9 PlugIn COM registration
PlugIns must support proper COM registration and unregistration.

5.9.1 Dll registration
Dlls are registered like any COM DLLs through exporting the following functions:

DllRegisterServer()

DllUnregisterServer()

Both functions must be implemented.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 35 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

5.9.2 Exe registration
To realize both registration and unregistration of custom EXE PlugIns, the recommended
COM mechanisms for out-of-process COM servers should be incorporated (see MSDN
documentation). This includes the usage of /UnregServer and /RegServer command line
parameters.

The PlugIn application’s startup code is responsible for the proper handling of both actions.
An example code fragment:

TCHAR szTokens[] = _T("-/");
LPCTSTR lpszToken = FindOneOf(m_lpCmdLine, szTokens);

while (lpszToken != NULL)
{
 if (lstrcmpi(lpszToken, _T("UnregServer"))==0)
 {
 COleObjectFactory::UpdateRegistryAll(FALSE); // This unregisters all other COM

objects derived from CcmdTarget
 return TRUE;
 }
 if (lstrcmpi(lpszToken, _T("RegServer"))==0)
 {
 if (COleObjectFactory::UpdateRegistryAll(TRUE))
 OutputDebugString(_T("Successfully registered server.\n"));
 else
 OutputDebugString(_T("Warning: Server registration failed.\n"));

 return TRUE;
 }
 lpszToken = FindOneOf(lpszToken, szTokens);
}

5.9.3 Registering Plugins & OS access rights
Before you can use a Plugin with SIDEXIS it has to be registered with SIDEXIS’ PlugIn
Manager. Internally, the registration process includes 2 steps:

1. COM registration

2. SIDEXIS registration

For registering a COM server you ought to have writing privileges to the registry
(HKEY_CLASSES_ROOT + HKEY_LOCAL_MACHINE). Remember that you don't have
these writing privileges when logged in as a "normal", or, “main” user. Please perform the
registration when you are logged in as (local) administrator!

In order to achieve this it is a good idea to bid the user call SIDEXIS’ Plugin Manager while
still logged in during your Plugin’s custom setup. This prevents the “normal” user from getting
poor Plugin Manager “Add Plugin” results on account of inappropriate access rights during
her/his normal session.

5.10 Installing SIDEXIS PlugIns
SIDEXIS PlugIns must be configuerd both as new COM component inside the Windows
system and as new SIDEXIS PlugIn inside the SIDEXIS configuration.

The following steps are required to get a new PlugIn installed:

1. Custom PlugIn setup. This step must be provided by the PlugIn provider and includes
copying of all relevant files and objects/services to the target PC.

2. PlugIn registration using SIDEXIS’ PlugIn Manager. This step registers the new PlugIn
inside the SIDEXIS environment.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 36 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

3. If SIDEXIS is installed in a network environment above steps must be repeated on every
SIDEXIS workstation. For this purpose the PlugIn installation from step 1 can be placed
on a shared network volume accessible from all workstations. The registration itself must
be repeated on every workstation!

5.10.1 Updates
Of course, PlugIns can, and shall be, updated. After the PlugIn files themselves have been
updated, return to SIDEXIS’ PlugIn Manager to “Add” the updated PlugIn file. Via the PlugIns
GUID, SIDEXIS automatically recognizes the case of a PlugIn already installed and treats
the PlugIn as an update of the former one. The complete PlugIn information shown in the
PlugIn Manager’s details pane can be updated as well as the PlugIn’s executable path.

The only information being not updateable are a PlugIn’s category and symbol. In case you
want to achieve this, you can work around that by simply first removing the PlugIn from the
PlugIn Manager and re-add it again afterwards. The category is decisive for the position
where the PlugIn is integrated into the SIDEXIS GUI. Thus, changing the category on the fly
could cause conflicts.

Never change a PlugIn’s GUID and category and keep in mind to maintain backward
compatibility for filter PlugIns!

5.11 Debugging SIDEXIS PlugIns

5.11.1 Project settings
If you are debugging a PlugIn application, you should set the Visual Studio “Program
Arguments” line of the “Debug Options” dialog to /Embedding or /Automation, so the
debugger can launch the server application as though it were launched from a SIDEXIS
container. Starting SIDEXIS from Program Manager or File Manager will then cause the
container to use the instance of the server started in the debugger.

Now you can walk through your PlugIn code and set breakpoints as usual.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 37 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

Figure 14 Debugging project settings

5.11.2 How can I debug a PlugIn?
The general mechanism of debugging COM components applies to the debugging of an
IDirectDental PlugIn as well. Set the command line parameter to "/AUTOMATION" and start
the debug command from the debugging IDE. The PlugIn will begin to execute and will wait
for an instanciation of itself to be created. Now set a breakpoint at the beginning of your
Run() method and execute the PlugIn from within SIDEXIS. By executing your PlugIn from
SIDEXIS, this app will create an instance of the PlugIn’s COM component and will call the
Run() method. Now your debugger will get control over execution. Step through the PlugIn
code for debugging purposes as usual.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 38 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

6 Support
In case of developer support questions please e-mail to

develop.sidexis@sirona.de

Visit

www.SIDEXIS.com

in any case of question. There you'll find up-to-date background material, all documentations
and the downloadable SDK.

Become a member of the SIDEXIS Developer Network community by registering your
Plugin!

6.1 Frequently asked questions

Q I get an error message when trying to add a PlugIn in SIDEXIS XG bearing the text
"Class not registered (...). Couldn't register PlugIn (...)". What went wrong?

A Your current login user account does not have enough access rights to add the
PlugIn on your computer. Changing the registry must be enabled to allow COM registration.
Please ask your administrator to adapt your logins’s access rights accordingly.

Q Why does the debug mode finish automatically after return of the Run() method?

A Since the newly created instance will be released automatically by SIDEXIS after the
Run() method returns the debugger will loose control over execution because the executed
instance will be destroyed. Therefore, in order to obtain a break at the last breakpoint again,
the PlugIn must be restarted in debug mode in the IDE as before.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 39 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

7 Appendix

7.1 SDK contents
\Resources Sample Plugin bitmaps

Sample bitmap color palettes

\XGExeWizard All required files for the PlugIn wizard

\Documentation SDK documentation:

ProgrammersGuide.pdf

ProgrammersReference.pdf

\Samples\VC6\SDI*) VC6 single document Plugin samples including source code

\Samples\VC6\MDI *) VC6 multiple document Plugin samples including source code

\Samples\VC6\Dialog VC6 dialogue based Plugin samples including source code
*) The SDI and MDI samples are very well suited for testing newly developped filter code: The samples
are thus organized that “GetImage" can be done and the image will be displayed immediately inside
the SDI/MDI view child window. "FilterImage" filters according to the pre-developped frame methods.
That means that you would run through the same code as the PlugIn as if it were finished already and
get displayed the filtered image. With "SetImage" you can send the filtered image pixels to SIDEXIS in
order to see the result immediately. Very impressing here is that you can use SIDEXIS’ menu
command “Undo filter” although you do not (yet) have a real, finished PlugIn. So, you can develop &
test very quickly.

SIDEXIS XG Programmer’s Guide
 Sirona

Changed 08.04.04 (Index 78) Seite 40 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

7.2 SIDEXIS XG PlugIn SDK License Agreement
This is a legal agreement between you (either an individual or a single entity) and Sirona Dental
Systems GmbH (hereinafter called Sirona) for the SIDEXIS XG PlugIn SDK and associated media and
printed materials (hereinafter collectively called SDK) By installing or otherwise using SDK, you accept
all the terms and conditions of this agreement. The SDK is owned by Sirona and is protected by
international copyright laws. By this license agreement, Sirona grants you a non-exclusive license to
use SDK on the terms set forth below.

1. Grant of License
An SDK license can be used by more than one individual developer. You may store or install a copy of
the SDK on a storage device, such as a net work file server, used only to install or run the SDK over an
internal network.

2. Proprietary rights, copyright notices

Except for the limited license granted herein, Sirona, and its suppliers, retains exclusive ownership of
all proprietary rights (including all ownership rights, title, and interest) in and to the SDK. If you are
using the interfaces provided with the SDK in your application software, the application must contain
the following copyright notice in the "About Box", "Splash Screen", or similar locations:
"Portions Copyright (C) 2003-2004 Sirona Dental Systems GmbH. All rights reserved."

3. Limitations

You may not use, copy, or modify the SDK, in whole or part, except as expressly provided for in this
agreement. You may not rent, lease or sublicense the SDK. You may not reverse engineer, decompile
or disassemble SDK binary components.

4. Term
Your SDK license is effective upon installation of the SDK. You may terminate the license at any time
by destroying the SDK together with all copies and development results using the interfaces dealt with
in the SDK. Your SDK license will terminate automatically if you fail to comply with any term or
condition of this agreement.

5. Limited warranty and liability

Sirona warrants that the media containing the SDK (if provided by Sirona) is free from defects in
material and workmanship. This is a limited warranty and it is the only warranty made by Sirona.
Sirona makes no other warranty, representation, or condition, express or implied, and expressly
disclaims the implied warranties of merchantability, fitness for a particular purpose, and
noninfringement of third party rights. The limited warranty is void if failure of the SDK has resulted from
accident, abuse or misapplication. Under no circumstances and under no legal theory, tort, contract, or
otherwise, shall Sirona or its suppliers or resellers be liable to you or any other person for any indirect,
special, incidental, or consequental damages of any character, including damages for loss of business
profits, business interruption, computer failure or malfunction, or any and all other commercial
damages or losses. In no case will Sirona be liable for any damages, even if Sirona had been
informed on the possibility of such damages, or for any claim by any other party.

6. In general

This agreement represents the complete agreement concerning this license between the parties and
supersedes all prior agreements and representations between them. This agreement may be
amended or changed only in writing executed by both parties. This agreement shall be governed by
and construed under the laws of the Federal Republic of Germany. The application of the United
Nations Convention of Contracts for the International Sale of Goods is expressly excluded.

Copyright © 2003-2004 Sirona Dental Systems GmbH. All rights reserved.

SIDEXIS is a registered trademark of Sirona Dental Systems GmbH.

Sirona
SIDEXIS XG Programmer’s Guide

 Changed 08.04.04 (Index 78) Seite 41 von 41

© 2004 Sirona Dental Systems GmbH. All rights reserved.

8 Index
Background 7
category 14
CCmdTraget 31
DirectDental 21
DirectDental PlugIn 14
DirectDental programming model 23
Dll registration 34
Exe registration 35
GetActiveExam 33
GetApplication 32
IApplication 22

IExam 22
IImage 22
inprocess COM servers 14
LPDISPATCH interfaces 32
plugin manager 35
Programming Model 22
SIDEXIS 6
SIDEXIS XG PlugIn 14
SIDEXIS XG toolbars 34
wizard 15
Wizard 17, 18, 19

